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Coherent RF Error Statistics

ROBERT B. DYBDAL, MEMBER, IEEE, AND RANDOLPH H. OTT, SENIOR MEMBER, IEEE

Abstract —RF error statistics for power, voltage, and phase are derived
under the assumptions that the error component is coherently related to
the desired signal, that its magnitude is constant, and that its phase is
equally likely and uniformly distributed from 0 to 360°. The error statis-
tics which result from these assumptions have nonzero mean values for
power and voltage and standard deviations which differ significantly from
those projected on the basis of Gaussian statistics that apply to incoherent
errors. These statistics will be applied to typical component errors which
arise in an overall system error budget.

I. INTRODUCTION

HE ACCURACY of RF measurements is a funda-

mental assessment in experiment design, measurement
programs, and system evaluations. Projections of overall
measurement accuracy are typically made through error
budget assessments comprised of an rss sum of the random
error components added to the sum of bias error compo-
nents. The error budget, therefore, requires knowledge of
the individual error mechanisms and quantification of
their first- and second-order statistics, i.e., the mean and
rms error values. Over the years, Gaussian statistics have
been widely used in error projections dating to the original
application by Woodward [1]. A tutorial presentation of
this analysis, its underlying validity, and applications was
presented by Swerling [2], and the extent of such appli-
cations is described in [3]. Further extensions of this
analysis continue into the present time; the statistics for
the phase difference between two vectors have recently
been published [4]. These analyses, however, are tied to the
fundamental assumption of Gaussian statistics.

When errors are coherently related to the desired signal,
the assumption of additive Gaussian error statistics con-
flicts with physical interpretation. The error statistics for
the coherent case are derived on the basis of the familiar
phasor diagram shown in Fig. 1, where the true value is set
to unity with a 0° phase angle without loss of generality,
and the error has a constant relative amplitude a and
phase angle a, which is assumed to be equally likely and
uniformly distributed from 0 to 360°. The physical model
of this situation is particularly appropriate with today’s
popularity for swept-frequency measurements. Generally,
the magnitude of the error component varies slowly with
frequency changes while the phase between the true and
error components rotates with frequency changes. This
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phasor picture of the errors has had most application and
familiarity in terms of the peak-to-peak values of the error.
However, the first- and second-order statistics for this
distribution have had relatively little investigation and are
believed to be original in this work. The simple phasor
diagram is adequate for narrow-bandwidth signals; for
broader bandwidth waveforms, the error component should
be weighted by the autocorrelation of the waveform with
the appropriate time delay.

If both the amplitude and phase of the error component
can be determined, then the error can, of course, be
quantified deterministically by calibration. Indeed, this
technique is well developed in modern network analyzer
practice, where vector measurement techniques used with
reference standards obtain the full scattering matrix char-

. acterization of the measurement system [5]. In this case,

measurement accuracy is exceedingly good, and is limited
principally by the repeatability of the setup, accuracy of
the standards, quantization in the sampling, etc. However,
the coherent errors cannot always be determined through
calibration, and in some situations, e.g., multipath, the
phasing of the error component may be time-varying.
These statistics are also useful in specifying the component
performance needed to achieve overall system perfor-
mance.

II. STATISTICAL ANALYSIS

This section develops the necessary analyses for the
first- and second-order statistics for power, voltage, and
phase measurements. The resulting statistics will be com-
pared to the more familiar Gaussian error statistics.

A. Statistics for Power

The error statistics for power measurements are
straightforward to derive. With reference to Fig. 1, the
total power measured is given by

P =(1+ ae’*)(1+ ae’*)*
=1+ a?+2acosa. (1)
The mean value of the resultant power is obtained from

E,= (1/277)/2"(1+ a’+2acosa) da
0
=1+ a2 (2)

The true power level, which would be observed when a
equals zero, is unity, so that the mean power error equals
a?. Similarly, the variance of the resultant power is ob-
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Fig. 1. Phasor diagram for coherent error analysis.
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Fig. 2. Power error statistics.

tained from
Vo= (1/27) [(P - E,)" da
0

=2a?
and the corresponding standard deviation is given by
op=v2a. 4)

Typical values for the error statistics are plotted in Fig. 2
in the form of dB values. The peak-to-peak levels, which
are commonly seen as the modulation envelope of coher-
ent interaction, are presented. The mean error has an
appreciable value as a increases. Because of the logarith-
mic form of the dB values, a 410 spread about the mean
value of the power is presented in this figure.

©)

B. Statistics for Voltage

The statistics for voltage errors are not as simply derived
as the power errors. The total voltage is the square root of
(1), and the error is obtained by subtracting unity, the true
value. The mean value of the total voltage is

E, = (1/2w)f02”Vda

=(2/7)(1+a)E(4a/(1+a)’) (5)

where E( ) is the complete elliptic integral of the second
kind. While the elliptical integral is tabulated, a simple
analytic expression is more useful. Two polynomial ap-
proximations for the elliptic integral [6] were examined;
the polynomial series were derived for the argument and
the complement of the argument. The series based on the
argument results in

E,=(1+a)(1-(a/(1+a)") - (3a%/4(1 + a)") - - ).
(6)

The series based on the complementary argument results

m
E,=~1+(a%/4)+(a*/64)+ - . (7)
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TABLE I
CoMPUTATION COMPARISON FOR MEAN VALUE
OF THE TOTAL VOLTAGE

IMSL Eq. (6) Eq. (7)
Subroutine
a Integration (1+a) (1- —2 2) 1+ (az)//o
(1+a)
000 1.00000000 1.00000000 1.00000000
.100 1.00250157 1.00909091 1.00250000
.200 1.01002525 1.03333333 1.01000000
.300 1.02262952 1.06923077 1.02250000

400 1.04041709

—
—

.11428571 1.04000000

.500

—

206354441

—

.16666667 1.06250000

.600

—

.09223858

i

+22500000

—

.09000000

.700

—

.12682867

—

.28823529

—

.12250000

.800

—

.16780951

—

.35555556

—

+16000000

.%00

-

+21600092

—

42631579

-

+20250000

1.000

o

.27323928

—

.50000000

—

+25000000

Numerical comparisons of the expressions derived for
the expected value of the total voltage were made. The
elliptic integral was computed from an IMSL subroutine
based on Chebyshev polynomials available on our com-
puter system, numerical integration of the integral using a
trapezoidal rule with 1000 points, and the two series
expansions given in (6) and (7). The results of these
comparisons are presented in Table I in terms of the
expected value of the total voltage; the expected error is
obtained by subtracting 1 from these numbers. The exact
value for a =1 can be derived analytically and is equal to
4 /7, which provides another check. The series presented in
(7) provides not only the most accurate series result,
but also the most convenient form to compute. For
a < 0.5(—6 dB), the accuracy of the mean error computed
from (1,/4)a? is within 1.6 percent.

The second-order statistics for the voltage were also
derived. The expected value of the square of the voltage is
identical with the expected value of the power given in (2).
The variance of the total voltage is given by

v, =1+a>—((2(1+a)/m)E(da/(1+a))). (8)

The computation of the elliptic integral arises again. The
first two terms of (7) result in the following expression for
the standard deviation:

ov=(a /) (1-(a216)— ) ()
The results of a numerical comparison between this ex-
pression and (8) evaluated by the Chebyshev polynomial
routine are presented in Table II. For ¢ < 0.5 (—6 dB), the
expression in (9) is accurate within 0.1 percent. Values of

the peak-to-peak variations, the mean error, and the rms
spread about the mean for the voltage are plotted in Fig. 3.

C. Statistics of Phase

The statistics for the phase are difficult to derive in
closed form. Again, referring to the phasor diagram in Fig.
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TABLE II
COMPUTATION COMPARISON FOR STANDARD DEVIATION OF
VOLTAGE ERRORS

a IMSL Subroutine Eg. (9)
.000 00000000 00000000
.100 07064423 07064436
1200 14088642 . 14089003
.300 .21030662 21033456
400 27844620 .27856777
500 34478005 34516753
600 40867453 40969501
.700 .46931562 47168912
800 52556726 53065997
.900 57562294 .58608073

1.000 +61551690 63737744
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Fig. 3. Voltage error statistics.

1, the error in the phase can be expressed as

(10)
The mean value of the phase error can be analytically
demonstrated to be zero by observing the symmetry of the
integrand used to calculate the expected value. The sec-
ond-order statistics can be derived from

v,= (1/2w)f()2"(e)2da. (11)

This integral is difficult to evaluate in closed form. If the
integrand is expanded in a Taylor’s series, the following
expression results:

V,=a%/2+a%/8+ -

e=tan"!(asina/(1+ acosa)).

(12)

and the standard deviation is obtained from the square
root of these values. Table III shows a comparison of the
series approximation with the numerical evaluation of the
integral for the standard deviation values. For ¢ <0.5 (—6
dB), the accuracy of the series form compared to the
numerical integration is better than 0.5 percent. The case
a =1 can also be integrated exactly, with the result 7%/12,
which provides another check on the results.

Values for the peak-to-peak errors and the standard
deviation for the phase are also presented in Fig. 4. The
peak-to-peak errors are the modulation envelope of the
phase ripple observed experimentally.
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TABLE III
COMPUTATIONAL COMPARISON FOR STANDARD DEVIATION OF
PHASE ERRORS

Numerical

a Integration* Eq. (12)
[¢] ) 0
0.1 4.08 4,06
0.2 8.24 8.14
0.3 12.31 12.29
0.4 16.59 16.53
0.5 20.98 20.88
0.6 25.92 25.38
0.7 30.12 30.05
0.8 35.92 34.91
0.9 42.54 39.98
1.0 51.96 45.30

*Values in degrees.
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Fig. 4. Phase error statistics.

D. Summary and Comparison

For convenience, the expressions for the mean and
standard deviation of the errors are presented in Table IV.
The approximate expressions derived from series expan-
sions are indicated by =. These statistics are for the error
values; the correct value of 1 has been taken out.

The comparison between the statistical values derived
for the coherent errors and those derived from the Gauss-
ian statistics was done in the following manner. The stan-
dard deviation for Gaussian statistics is typically derived
by assuming that the peak-to-peak variations represent
+ 50 values, with the results for power, voltage, and phase
given in Table IV. The standard deviations for the coher-
ent error case are significantly higher than those for the
incoherent case. In addition, the coherent error statistics
for both power and voltage have nonzero mean errors, in
contrast to the incoherent case.

The theoretical basis of the coherent and incoherent
error statistics also provides a contrast between the two
types of error components. The statistics for incoherent
errors are derived under the assumption of a large number
of statistically similar components having a zero mean
error. The central limit theorem is then invoked to obtain
Gaussian statistics [7]. As will be discussed, many practical
microwave measurement applications do not have a “large”
number of statistically similar components. The question
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TABLE IV
COMPARISON OF ERROR STATISTICS

Mean _Ims

Coherent

Power a2 ﬁa

Voltage zazlé =a/\/2_

Phase 0 =a/\/7
Incoherent (+ 50)

Power 0 0.4 a

Voltage 0 =0.2 a

Phase 0 =0.2 a

of “largeness” has been explored further [8], [9]. These
analyses can be applied in the case of the statistics for
voltage, and are based on the random walk problem. The
random walk problem is typically approached in a series of
steps, with the overall distance, which corresponds to
voltage in this context, expressed by Kluyver’s formula
[10]. Kluyver’s formula gives the probability of the re-
sultant distance as a product of Bessel functions whose
arguments depend on the individual step size. In the
problem depicted in Fig. 1, two steps, 1 and a, are taken.
It can be shown that the same series given in (7) is
obtained from the random walk treatment of the problem.

III. APPLICATIONS

Typical applications for the statistical analyses which
have been developed are described here. This discussion
concentrates on those measurement applications in which
the full vector characterization and calibration of the mea-
surement system as used in modern network analyzer
systems are not practical; such examples are seen in RF
measurements performed in open systems, and three such
applications are described. The manner in which the re-
ceiver processes information also dictates the appropriate
application of the statistics of power, voltage, or phase.

A. RF Facility Limitations

Antenna and RCS (radar cross section) measurements
are performed in open facilities whose inherent back-
ground returns limit measurement accuracy. These facili-
ties, whether outdoor ranges or indoor anechoic chambers,
strive to provide a free-space environment for the antenna
or radar target under test, and the measurement errors for
the facility result from the deviation from an ideal free-
space environment. The facility is illuminated by the same
signal used to evaluate the antenna or radar target; conse-
quently, the errors are coherently related to the desired
signal.

Reflectivity is the measure of the facility background for
antenna measurements. The physical basis of this term is
the ratio of the reflected energy from the facility to the
energy in the desired direct signal. The mechanisms of
reflectivity may be either distributed, as in the walls of an
anechoic chamber, or discrete, as in reflecting objects in
outdoor ranges. The application of this term is illustrated
by the pattern measurement depicted in Fig. 5(a). Reflec-
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Fig. 5. RF facility measurement errors. (a) Antenna pattern measure-
ments. (b) Radar cross section measurements.

tivity is referenced to the peak gain level of the measured
antenna pattern. When the reflectivity equals the dynamic
range of the pattern measurement, the facility reflects as
much power as that received by the true antenna pattern
measured in an ideal free-space environment. Generally,
antenna pattern accuracy is specified at an absolute gain
level, and the difference between that level and the reflec-
tivity level of the facility determines the value of a as used
here. In the illustration, the reflectivity level is indicated as
a constant level; when discrete reflection sources exist in a
facility, the reflectivity varies with aspect angle.

The RCS facility background is somewhat more com-
plex. Three mechanisms contribute to the background level
of the facility: 1) the radar return from the physical
structure of the facility, 2) the radar return from the target
support system, and 3) the finite isolation between the
instrumentation radar’s transmitter and receiver. These
three mechanisms are treated independently in error
budgets, and are referenced to an absolute RCS level at the
range at which the target is measured. RCS measurement
accuracy is generally specified at an absolute RCS level,
and the value of a is determined for each mechanism
relative to that specified level, as depicted in Fig. 5(b). The
aggregate error for the three independent mechanisms can
be obtained from an rss sum added to the sum of the mean
values. This process can be easily justified by generalizing
the power statistics to N phasors appropriate to the defini-
tion of RCS. Therefore, this combination of the three
mechanisms to form an aggregate background level of the
RCS facility is valid.

Both antenna gain and RCS are defined on the basis of
power, and the power error statistics previously derived
can be directly applied. Voltage and phase statistics have
more limited application for RF facility limitations. One
example lies with RCS measurements in which the polar-
ization properties of radar targets are to be transformed
from one orthogonal set to another, ie., from linear to
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circular. In this case, amplitude and relative phase mea-
surements are required, and the scattering matrix treat-
ment developed by Kennaugh [11] is used. The statistics
for voltage and phase can be applied to assess measure-
ment accuracy in this case.

B. Multipath

Statistical analyses have been widely used to project the
performance of RF systems that operate in a multipath
environment. A statistical treatment for multipath is par-
ticularly appropriate because in many applications the
phasing between the multipath components is time-vary-
ing. The time variation can result from changes in the link
geometry, changes in refraction characteristics, or, in the
case of ionospheric propagation, changes in the plasma
profiles. The statistical treatments for such problems have
used Rayleigh or Rician distributions {12]. These statistical
treatments provide an interesting contrast to the coherent
error analyses presented here.

The distinction between the coherent error analyses and
Rayleigh or Rician statistics lies with the number of com-
ponents. As formulated here, the statistics consider the
case in which two components comprise the total field. By
contrast, Rayleigh statistics assume an infinite number of
components with the same statistical distribution, while
the Rician statistics assume one dominant component to-
gether with a Rayleigh-distributed infinite number of com-
ponents [12]. Indeed, both distributions can be derived by
expanding the number of terms in Kluyver’s formula, used
in the random walk problem. More general distributions
are treated in [13]. In contrast with these statistical as-
sumptions, many practical microwave problems have only
a limited number of error components. The treatment of a
limited number of components has received less attention
(8], [9]. The numerical results suggest that at least five or
six components are required for the probability to ap-
proach the Rayleigh distribution.

The statistical analyses for the coherent errors treat a
direct signal, represented by unit amplitude, and one mul-
tipath component, represented by the relative amplitude a.
The statistical analyses therefore apply to the classic geo-
metric optics picture of propagation over a smooth, flat
ground. The Fresnel reflection coefficients [14] adjusted by
any differential space loss and antenna pattern factor can
be used to estimate the value of a for a given polarization.
Again, the appropriate statistical value can be selected
according to the manner in which the receiver processes
the RF signal.

C. Antenna Cross-Polarization Errors

The cross-polarization inherent in practical antenna de-
signs leads to other applications for the statistical analyses
developed here. The cross-polarization errors for a single
antenna are one example. The measurement of the power
and polarization characteristics of an incident field by two
nominally orthogonally polarized antennas is a second
example. Polarization concepts are described in more de-
tail in [15].
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Pattern measurements of antennas typically characterize
the relative amplitudes of the principal and cross-polarized
components. Measurements of the relative phase between
principal and cross-polarized components can be per-
formed, albeit with additional measurement expense and
calibration uncertainty. The analysis presented here can be
used by equating the relative level of the cross-polarized
response to the parameter a used in the statistical analysis.
The choice of power, voltage, and /or phase statistics again
depends on the manner in which the receiver processes the
information.

The second application related to cross-polarization for
this statistical analysis lies with those systems designed to
measure the polarization of incident fields. Ideally, the
characierization is performed with two orthogonally
polarized antennas; in practice, some level of cross-polar-
ization exists and the two antennas are only nominally
orthogonally polarized. In some cases, the voltages re-
ceived by these two antennas with their inherent cross-
polarization can be expressed as

HEE A

where V; and V, are the voltages at the nominally or-
thogonal output ports of the antenna, I' is the complex

value of the antenna cross-polarization, and b and
Vi-»b? Zﬁ are the incident field components resolved into
orthogonal components. The incident field is specified in
this fashion to express the most general elliptically
polarized incident field on the two antennas. A simple
example of such a system which obeys (13) is two or-
thogonal dipoles connected through a hybrid network.

If the two antennas were ideally orthogonally polarized,
the total power in the incident field could be obtained by
simply summing the power in each antenna port. The
power received by the two ports is given by

P,=1+T?+4bV1~b* cosBReT. (14)

It can be shown that the worst-case errors in the power
measurement occur when b=1/v2 and cosf = +1. Un-
der these conditions, this power expression reduces to (1).
Physically, these two conditions correspond to ideally lin-
ear or circularly polarized incident fields transmitted with
either the same or opposite phasing. It is interesting to
note that these are the most common choices of orthogo-
nally polarized fields.

The measurement of an incident field which is ideally
linearly polarized is another typical task. The polarization
characteristics of the antenna, the parameters 1 and I is
(13), are commonly specified in either orthogonal linear or
orthogonal circular components. The incident power and
orientation of the electric field, the latter referred to as tilt
angle, are typically the quantities to be determined by such
systems. The errors in such a measurement are described
in Table V. The orientation, or tilt angle, of the field is
expressed by 8, which is defined 0 to 180°. The functional
form of the errors in Table V therefore reduces to the same

(13)
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TABLEV
CROSS-POLARIZATION ERRORS FOR LINEARLY POLARIZED FIELD

Measured by Circularly
Polarized Antenna

Measured by Linearly
Polarized Antenna

b cos 8 1/vZ

v/l_'? /8 sin © (1/Y7) (28

Power Error 1‘2 + 2 sin26 ReT X‘Z + 2cos28Rel
Mean Power Error I‘2 I‘2

rms Power Error vZ ReT /7 ReT

Tilt Angle tan;1|V2/VII /2 a ¢

Indicated Tilt Angle tan~T [%) tzm“1 (tan8 (i—;—lx:—-))
Error in Tilt Angle tan~l (%] tan™! [1—%)
Mean Tilt Angle Error 0 0

rms Tilt Angle Error = /YT = T/VZ
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form as those used in the statistical analysis previously
described. The power errors are identical to those previ-
ously discussed, and the tilt angle errors correspond to
those for the phase error analysis, and the analyses pre-
sented here also apply. The errors for more generally
polarized incident fields are described in [16].

D. VSWR Interaction

The VSWR interaction between connecting electronic
components is the final application discussed here. Mod-
ern network analyzer systems use vector calibration to
minimize such errors; however, such instrumentation is not
always available. The statistical approach also finds appli-
cation when component requirements must be specified in
an error budget projecting overall operational system per-
formance.

A first-order VSWR interaction is shown in Fig. 6.
Reference planes associated with the two electronic com-
ponents are indicated by the subscripts, and the two
components are assumed to be connected by a cable of
length d and phase velocity k. The ratio of the direct
transmission to the first interaction as derived in this
figure is given by

R=TT,e 7

=R/ p. (15)

This derivation provides both amplitude and phase infor-
mation so that the interaction effects can be arrived at
deterministically. In many cases, however, only VSWR
data are available as a description of the terminals, and the
phase information is lost. In such cases, the statistical
description developed here is appropriate. The value of a
expressed in terms of the scalar VSWR parameter is given
by

VSWR, -1 VSWR, -1
VSWR; +1 VSWR, +1

IR} =

(16)

where the subscripts on the VSWR quantities are associ-

PHASE VELOGITY k | cOMPONENT 2
COMPONENT 1 LENGTH d
REFLECTION REFLECTION
COEFFICIENT [y j#= — — = — — COEFFICIENT Ty
VSWR; VSWR,
(a)
fe———— ]
! |
—Jk
1 [ T e ke
| i
| 1T i
| !
I PP P A
T T
| !
I |
I
REFERENCE REFERENCE
PLANE 1 PLANE 2
(b)
Fig. 6. VSWR interaction. (a) Block diagram. (b) First-order interac-
tion.

ated with the two terminal planes. The parameter |R| can
be equated to g and the statistical analyses can be applied.

The analysis thus far has considered only the first-order
interactions; the higher order interactions become signifi-
cant only when both VSWR values are large. The effects of
these higher order interactions are conventionally written
in closed form by observing that each succeeding interac-
tion equals the preceding interaction multiplied by R. The
total VSWR interaction is thus expressed by

R'=R/(1-R)
-IR1/ ¥
This expression can also be inverted to yield
R=R/(1+R’).

Examining the phase of these expressions yields

(17)

(18)

p=p—p"
where
o’ =tan"*(|R|sin p/(1—|R]|cosp)
= tan"'(|R’|sin p’ /(1 +|R’|cosp’).

(19)

Thus, the statistics of the phase of the higher order interac-
tions have the same functional form as the phase statistics
previously derived.

The effect of the magnitude of the higher order interac-
tion terms can be treated statistically. The magnitude of R’
1s given by

, 12
|R'| =|RI/(1+|R|* ~2|R|cosp) "".
The highest level reflection value is given by

|R| max = [RI/(1=|RY)
~ (VSWR, —1)(VSWR, —1)
/(2(VSWR, + VSWR,)). (21)

This represents the worst-case VSWR interaction and is
plotted in Fig. 7 for representative VSWR values. The

(20)
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Fig. 7. Worst-case VSWR interaction errors.
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Fig. 8. Statistics for total VSWR' interaction magnitude relative to

first-order interaction values.

minimum level reflection value is given by
|R'| i = |RI/(1+|R]).

The mean value of the VSWR interaction can be calcu-
lated by assuming p to be uniformly distributed from 0 to
360°. The result is

= (R)/7(1+ |R))K(2yiR[ /(1+|R]) (23)

where K( ) is the complete elliptic integral of the first
kind. Series expressions for the elliptic integral were ex-
amined [6], and a form based on the complementary
argument was found both accurate and computationally
convenient; the expression is

Ejry = [R(1+(IRI>/4) + (9|R|*/64) +

The accuracy of this expression is better than 1.0 percent
for a < 0.5 (— 6 dB), and also provides a convenient means
to assess the effects of higher order interactions in an
average sense. Numerical values for the effects of the
higher order interaction statistics are presented in Fig. 8.

(22)

IRI

(24)

IV. SuMMARY

The statistics for coherent power, voltage, and phase
errors are derived under the assumptions that the ampli-
tude of an error component has a constant level and that
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the phase of the component is unknown and equally likely
and uniformly distributed between 0 and 360°. These
statistics differ from the values projected from Gaussian
statistics which apply to incoherent errors. In many practi-
cal microwave measurements, the number of statistically
similar components is not large, and the coherent errors
are better characterized by this statistical model. Several
applications are cited in which the vector calibration nec-
essary to determine the phase angle a is impractical.
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