
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-34, NO. 12, DECEMBER 1986

Coherent RF Error Statistics

ROBERT B. DYBDAL, MEMBER, IEEE, AND RANDOLPH H. OTT, SENIOR MEMBER, IEEE

Abstract —RF error statistics for power, voltage, and phase are derived

under the assumptions that the ervor component is coherently related to

the desired signal, that its magnitude is constant, tid that its phase is

equafly likely and uniformly distributed from O to 3600. The error statis-

tics which resnlt from these assumptions have nonzero mean vafues for

power and voltage and standard deviations which differ significantly from

those projected on the basis of Gaussian statistics that apply to incoherent

errors. These statistics will be appfied to typical component errors which

arise in an overafl system error bndget.

I. INTRODUCTION

T HE ACCURACY of RF measurements is a funda-

mental assessment in experiment design, measurement

programs, and system evaluations. Projections of overall

measurement accuracy are typically made through error

budget assessments comprised of an rss sum of the random

error components added to the sum of bias error compo-

nents. The error budget, therefore, requires knowledge of

the individual error mechanisms and quantification of

their first- and second-order statistics, i.e., the mean and

rms error values. Over the years, Gaussian statistics have

been widely used in error projections dating to the original

application by Woodward [1]. A tutorial presentation of

this analysis, its underlying validity, and applications was

presented by Swerling [2], and the extent of such appli-

cations is described in [3]. Further extensions of this

analysis continue into the present time; the statistics for

the phase difference between two vectors have recently

been published [4]. These analyses, however, are tied to the

fundamental assumption of Gaussian statistics.

When errors are coherently related to the desired signal,

the assumption of additive Gaussian error statistics con-

flicts with physical interpretation. The error statistics for

the coherent case are derived on the basis of the familiar

phasor diagram shown in Fig. 1, where the true value is set

to unity with a 00 phase angle without loss of generality,

and the error has a constant relative amplitude a and

phase angle a, which is assumed to be equally likely and

uniformly distributed from O to 3600. The physical model

of this situation is particularly appropriate with today’s

popularity for swept-frequency measurements. Generally,

the magnitude of the error component varies slowly with

frequency changes while the phase between the true and

error components rotates with frequency changes. This
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phasor picture of the errors has had most application and

familiarity in terms of the peak-to-peak values of the error.

However, the first- and second-order statistics for this

distribution have had relatively little investigation and are

believecl to be original in this work. The simple phasor

diagram is adequate for narrow-bandwidth signals; for

broader bandwidth waveforms, the error component should

be weighted by the autocorrelation of the waveform with

the appropriate time delay.

If both the amplitude and phase of the error component

cart be determined, then the error can, of course, be

quantified deterministically by calibration. Indeed, this

technique is well developed in modern network analyzer

practice, where vector measurement techniques used with

reference standards obtain the full scattering matrix char-

acterization of the measurement system [5]. In this case,

measurement accuracy is exceedingly good, and is limited

principally by the repeatability of the setup, accuracy of

the standards, quantization in the sampling, etc. However,

the coherent errors cannot always be determined through

calibration, and in some situations, e.g., multipath, the

phasing of the error component may be time-varying.

These statistics are also useful in specifying the component

performance needed to achieve overall system perfor-

mance.

11. STATISTICAL ANALYSIS

This section develops the necessary analyses for the

first- and second-order statistics for power, voltage, and

phase measurements. The resulting statistics will be com-

pared to the more familiar Gaussian error statistics.

A. Statistics for Power

The error statistics for power measurements are

straight forward to derive. With reference to Fig. 1, the

total power measured is given by

P = (1+ ae~”)(l + ae~”)”

=l+a2+2acosa. (1)

The mean value of the resultant power is obtained from

EP= (1/27r)~2w(l+ a2+2acosa) da
o

=l+az. (2)

The true power level, which would be observed when a

equals zero, is unity, so that the mean power error equals

a 2. Similarly, the variance of the resultant power is ob-
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Fig. 1. Phasor diagram for coherent error analysis
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Fig. 2. Power error statistics.

tained from

Vp = (1/2 Tr)J2”(P – Ep)2da
o

=2a2 (3)

and the corresponding standard deviation is given by

o,=fia. (4)

Typical values for the error statistics are plotted in Fig. 2

in the form of dB values. The peak-to-peak levels, which

are commonly seen as the modulation envelope of coher-

ent interaction, are presented. The mean error has an

appreciable value as a increases. Because of the logarith-

mic form of the dB values, a + lo spread about the mean

value of the power is presented in this figure.

B. Statistics for Voltage

The statistics for voltage errors are not as simply derived

as the power errors. The total voltage is the square root of

(l), and the error is obtained by subtracting unity, the true

value. The mean value of the total voltage is

Ev = (1/2m)~2%da
o

= (2/T) (l+ a) E(4a/(1+ a)2) (5)

where E( ) is the complete elliptic integral of the second
kind. While the elliptical integral is tabulated, a simple

analytic expression is more useful. Two polynomial ap-

proximations for the elliptic integral [6] were examined;

the polynomial series were derived for the argument and

the complement of the argument. The series based on the

argument results in

Ev= (l+a)(l-(a/(l+ a)2)-(3a2/4(l+a)4) .).

The series based on the complementary

in

Ev =l+(a2/4)+(a4/64)+

(6)

argument results

. . . (7)

TABLE I
COMPUTATIONCOMPARISONFORMEAN VALUE

OFTHETOTAL VOLTAGE

IMSL E~. (6) E~. (7)
Subroutine

a I“cegrati On (1+.)(1- ~) 1 + (a2)14
(l+a)z

.000 1.00000000 1.00000000 1.00000000

.100 1.00250157 1.00909091 1.00250000

.200 1.01002525 1.03333333 1.01000000

.300 1.02262952 1.06923077 1.02250000

.400 1.04041709 1.11428571 1.04000000

.500 1.06354441 1.16666667 1.06250000

.600 1.09223858 1.22500000 1.09000000

.700 1.12682867 1.28823529 1.12250000

.800 1.16780951 1.35555556 1.16000000

.900 1.21600092 1.42631579 1.20250000

1.000 1.27323928 1.50000000 1.25000000

Numerical comparisons of the expressions derived for

the expected value of the total voltage were made. The

elliptic integral was computed from an IMSL subroutine

based on Chebyshev polynomials available on our com-

puter system, numerical integration of the integral using a

trapezoidal rule with 1000 points, and the two series

expansions given in (6) and (7). The results of these

comparisons are presented in Table I in terms of the

expected value of the total voltage; the expected error is

obtained by subtracting 1 from these numbers. The exact

value for a = 1 can be derived analytically and is equal to

4/T, which provides another check. The series presented in

(7) provides not only the most accurate series result,

but also the most convenient form to compute. For

a < 0.5( – 6 dB), the accuracy of the mean error computed

from (1/4) a 2 is within 1.6 percent.

The second-order statistics for the voltage were also

derived. The expected value of the square of the voltage is

identical with the expected value of the power given in (2).

The variance of the total voltage is given by

Vv=l+ a’ -((2(1+ a)/n)E(4a/(1+ a)’))’. (8)

The computation of the elliptic integral arises again. The

first two terms of (7) result in the following expression for

the standard deviation:

‘v= (a/ti)(l-(3a2/16)- . . . )’/2 (9)

The results of a numerical comparison between this ex-

pression and (8) evaluated by the Chebyshev polynomial

routine are presented in Table II. For a <0.5 (– 6 dB), the
expression in (9) is accurate within 0.1 percent. Values of

the peak-to-peak variations, the mean error, and the rms

spread about the mean for the voltage are plotted in Fig. 3.

C. Statistics of Phase

The statistics for the phase are difficult to derive in

closed form. Again, referring to the phasor diagram in Fig.
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TABLE II
COMPUTATIONCOMPARISONFORSTANDARDDEVIATIONOF

VOLTAGEERRORS

IMSL Subroutine-A_ Eq. (9)

.000 .00000000 .00000000

.100 .07064423 .07064436

.200 .14088642 .14089003

.300 .21030662 .21033456

.400 .27844620 .27856777

.500 .34478005 .34516753

.600 .40867453 .40969501

.700 .46931562 .47168912

.800 .52556726 .53065997

. !400 .57562294 .58608073

1.000 .61551690 .63737744

TABLE III
COMPmATIONALCOMPARISONFORSTANDARDDWIATIONOF

PHASEERRORS

Numerical
~ Integration* Eq . (12)

o 0 0

0.1 4.o8 4.06

0.2 8.24 8.14

0.3 12.31 12.29

0.4 16.59 16.53

0.5 20.98 20.88

0.6 25.92 25.38

0.7 30.12 30.05

0.8 35.92 34.91

0.9 42.54 39.98

1.0 51,96 45.30

*Values in degrees.

10. I I 100_ I I

,-PEAK TOPEAKERROR
%

‘1 –g
2

E. S?
k (i 1 slandarddeviation~ 5\. ,uJ

z 01 —y

: ‘>:: ‘can ““”’)

<1 :
9

xL

_ ZMEANERRO>=,

001 I \ I 01 I I
-lo -20 -30 -40 -lo -20 -30 -40

RELATIVECOMPONENTERRORLEVEL,dB RELATIVECOMPONENTERRORLEVEL,dB

Fig. 3. Voltage error statistics. Fig. 4. Phase error statistics.

1, the error in the phase can be expressed as

~=tan–l (a sins/(1+ acosa)). (lo)

The mean value of the phase error can be analytically

demonstrated to be zero by observing the symmetry of the

integrand used to calculate the expected value. The sec-

ond-order statistics can be derived from

v+= (1/277)12”(()%. (11)

This integral is difficult to evaluate in closed form. If the

integrand is expanded in a Taylor’s se-ties, the following

expression results:

V@=a2/2+a4/8+ . . . (12)

and the standard deviation is obtained from the square

root of these values. Table 111 shows a comparison of the

series approximation with the numerical evaluation of the

integral for the standard deviation values. For a <0.5 (– 6

dB), the accuracy of the series form compared to the
numerical integration is better than 0.5 percent. The case
a = 1 can also be integrated exactly, with the result ~ 2/12,

which provides another check on the results.

Values for the peak-to-peak errors and the standard

deviation for the phase are also presented in Fig. 4. The

peak-to-peak errors are the modulation envelope of the

phase ripple observed experimentally.

D. Summaq and Comparison

For convenience, the expressions for the mean and

standard deviation of the errors are presented in Table IV.

The approximate expressions derived from series expan-

sions ameindicated by =. These statistics are for the error

values; the correct value of 1 has been taken out.

The comparison between the statistical values derived

for the coherent errors and those derived from the Gauss-

ian statistics was done in the following manner. The stan-

dard deviation for Gaussian statistics is typically derived

by assuming that the peak-to-peak variations represent
~ 5U values, with the results for power, voltage, and phase

given in Table IV. The standard deviations for the coher-

ent error case are significantly higher than those for the

incoherent case. In addition, the coherent error statistics

for both power and voltage have nonzero mean errors, in

contrast to the incoherent case.

The theoretical basis of the coherent and incoherent

error statistics also provides a contrast between the two

types (of error components. The statistics for incoherent

errors are derived under the assumption of a large number

of statistically similar components having a zero mean

error. The central limit theorem is then invoked to obtain

Gaussian statistics [7]. As will be discussed, many practical

microwave measurement applications do not have a” large”

number of statistically similar components. The question
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TABLE IV
COMPARISON OF ERROR STATISTICS

Mean ml.
—.

Coherent

Power a’ JT a

Voltage =a214 =.AF

Incoherent (~ 5u)

Power o 0.4 a

voltage o =0.2 a

Phase o =0.2 a

of “largeness” has been explored further [8], [9]. These

analyses can be applied in the case of the statistics for

voltage, and are based on the random walk problem. The

random walk problem is typically approached in a series of

steps, with the overall distance, which corresponds to

voltage in this context, expressed by Kluyver’s formula

[10]. Kluyver’s formula gives the probability of the re-

sultant distance as a product of Bessel functions whose

arguments depend on the individual step size. In the

problem depicted in Fig. 1, two steps, 1 and a, are taken.

It can be shown that the same series given in (7) is

obtained from the random walk treatment of the problem.

III. APPLICATIONS

Typical applications for the statistical analyses which

have been developed are described here. This discussion

concentrates on those measurement applications in which

the full vector characterization and calibration of the mea-

surement system as used in modern network analyzer

systems are not practical; such examples are seen in RF

measurements performed in open systems, and three such

applications are described. The manner in which the re-

ceiver processes information also dictates the appropriate

application of the statistics of power, voltage, or phase.

A. RF Facility Limitations

Antenna and RCS (radar cross section) measurements

are performed in open facilities whose inherent back-

ground returns limit measurement accuracy. These facili-

ties, whether outdoor ranges or indoor anechoic chambers,

strive to provide a free-space environment for the antenna

or radar target under test, and the measurement errors for

the facility result from the deviation from an ideal free-

space environment. The facility is illuminated by the same

signal used to evaluate the antenna or radar target; conse-

quently, the errors are coherently related to the desired

signal.

Reflectivity is the measure of the facility background for

antenna measurements. The physical basis of this term is

the ratio of the reflected energy from the facility to the

energy in the desired direct signal. The mechanisms of

reflectivity may be either distributed, as in the walk of an

anechoic chamber, or discrete, as in reflecting objects in
outdoor ranges. The application of this term is illustrated

by the pattern measurement depicted in Fig. 5(a). Reflec-

ANGLE

(a)

(b)

Fig. 5. RF facility measurement errors. (a) Antenna pattern measure-
ments. (b) Radar cross section measurements.

tivity is referenced to the peak gain level of the measured

antenna pattern. When the reflectivity equals the dynamic

range of the pattern measurement, the facility reflects as

much power as that received by the true antenna pattern

measured in an ideal free-space environment. Generally,

antenna pattern accuracy is specified at an absolute gain

level, and the difference between that level and the reflec-

tivity level of the facility determines the value of a as used

here. In the illustration, the reflectivity level is indicated as

a constant level; when discrete reflection sources exist in a

facility, the reflectivity varies with aspect angle.

The RCS facility background is somewhat more com-

plex. Three mechanisms contribute to the background level

of the facility: 1) the radar return from the physical

structure of the facility, 2) the radar return from the target

support system, and 3) the finite isolation between the

instrumentation radar’s transmitter and receiver. These

three mechanisms are treated independently in error

budgets, and are referenced to an absolute RCS level at the

range at which the target is measured. RCS measurement

accuracy is generally specified at an absolute RCS level,

and the value of a is determined for each mechanism

relative to that specified level, as depicted in Fig. 5(b). The

aggregate error for the three independent mechanisms can
be obtained from an rss sum added to the sum of the mean

values. This process can be easily justified by generalizing

the power statistics to N phasors appropriate to the defini-

tion of RCS. Therefore, this combination of the three

mechanisms to form an aggregate background level of the

RCS facility is valid.
Both antenna gain and RCS are defined on the basis of

power, and the power error statistics previously derived

can be directly applied. Voltage and phase statistics have

more limited application for RF facility limitations. One

example lies with RCS measurements in which the polar-

ization properties of radar targets are to be transformed

from one orthogonal set to another, i.e., from linear to
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circular. In this case, amplitude and relative phase mea-

surements are required, and the scattering matrix treat-

ment developed by Kennaugh [11] is used. The statistics

for voltage and phase can be applied to assess measure-

ment accuracy in this case.

B. Multipath

Statistical analyses have been widely used to project the

performance of RF systems that operate in a multipath

environment. A statistical treatment for multipath is par-

ticularly appropriate because in many applications the

phasing between the multipath components is time-vary-

ing. The time variation can result from changes in the link

geometry, changes in refraction characteristics, or, in the

case of ionospheric propagation, changes in the plasma

profiles. The statistical treatments for such problems have

used Rayleigh or Rician distributions [12]. These statistical

treatments provide an interesting contrast to the coherent

error analyses presented here.

The distinction between the coherent error analyses and

Rayleigh or Rician statistics lies with the number of com-

ponents. As formulated here, the statistics consider the

case in which two components comprise the total field. By

contrast, Rayleigh statistics assume an infinite number of

components with the same statistical distribution, while

the Rician statistics assume one dominant component to-

gether with a Rayleigh-distributed infinite number of com-

ponents [12]. Indeed, both distributions can be derived by

expanding the number of terms in Kluyver’s formula, used

in the random walk problem. More general distributions

are treated in [13]. In contrast with these statistical as-

sumptions, many practical microwave problems have only

a limited number of error components. The treatment of a

limited number of components has received less attention

[8], [9]. The numerical results suggest that at least five or

six components are required for the probability to ap-

proach the Rayleigh distribution.

The statistical analyses for the coherent errors treat a

direct signal, represented by unit amplitude, and one mul-

tipath component, represented by the relative amplitude a.

The statistical analyses therefore apply to the classic geo-

metric optics picture of propagation over a smooth, flat

ground. The Fresnel reflection coefficients [14] adjusted by

any differential space loss and antenna pattern factor can

be used to estimate the value of a for a given polarization.

Again, the appropriate statistical value can be selected

according to the manner in which the receiver processes

the RF signal.

C. Antenna Cross-Polarization Errors

The cross-polarization inherent in practical antenna de-

signs leads to other applications for the statistical analyses
developed here. The cross-polarization errors for a single

antenna are one example. The measurement of the power

and polarization characteristics of an incident field by two

nominally orthogonally polarized antennas is a second

example. Polarization concepts are described in more de-

tail in [15].

Pattern measurements of antennas typically characterize

the relative amplitudes of the principal and cross-polarized

components. Measurements of the relative phase between

principal and cross-polarized components can be per-

formed, albeit with additional measurement expense and

calibration uncertainty. The analysis presented here can be

used by equating the relative level of the cross-polarized

response to the parameter a used in the statistical analysis.

The choice of power, voltage, and/or phase statistics again

dependh on the manner in which the receiver processes the

information.

The second application related to cross-polarization for

this statistical analysis lies with those systems designed to

measure the polarization of incident fields. Ideally, the

characterization is performed with two orthogonally

polarized antennas; in practice, some level of cross-polar-

ization exists and the two antennas are only nominally

orthogonally polarized. In some cases, the voltages re-

ceived by these two antennas with their inherent cross-

polarization can be expressed as

where VI and Va are the voltages at the nominally or-

thogonal output ports of the antenna, r is the complex

value of the antenna cross-polarization, and b and

fii P are the incident field components resolved intoL
orthogonal components. The incident field is specified in

this fashion to express the most general elliptically

polarized incident field on the two antennas. A simple

example of such a system which obeys (13) is two or-

thogon al dipoles connected through a hybrid network.

If the two antennas were ideally orthogonally polarized,

the total power in the incident field could be obtained by

simply summing the power in each antenna port. The

power received by the two ports is given by

PP=l+1’2+4bJ~ cOsp Rer. (14)

It can be shown that the worst-case errors in the power

measurement occur when b = l/ti and cos ~ = +1. lJn-

der these conditions, this power expression reduces to (l).

Physically, these two conditions correspond to ideally lin-

ear or circularly polarized incident fields transmitted with

either the same or opposite phasing. It is interesting to

note that these are the most common choices of orthogo-

nally polarized fields.

The measurement of an incident field which is ideally

linearly polarized is another typical task. The polarization

characteristics of the antenna, the parameters 1 and r is

(13), are commonly specified in either orthogonal linear or

orthogonal circular components. The incident power and
orientation of the electric field, the latter referred to as tilt

angle, are typically the quantities to be determined by such

systems. The errors in such a measurement are described

in Table V. The orientation, or tilt angle, of the field is

expressed by 0, which is defined O to 1800. The functional

form of the errors in Table, V therefore reduces to the same
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TABLE V
CROSS-POLARIZATION ERRORS FOR LINEARLY POLARIZED FIELD

Measured by Linearly

Polarized Antenna

b Cos e

Power Error rz + 2 sin2E Rer

Mean Power Error r’

m Power Error n wr

Tilt Angle ta”-’l lv’2/v~ I

Measured by Circularly

Polarized Antenna

11/2

(1/47) ,@

r’ + 2c0s2etir

,2

/7 ReT

112 A ,$

Indicated Tilt Angle
Sine + rcOse ) ~an-l (ta”e (*))

‘an-r [cOse + r.me

Error in Tilt Angle
rmsze

‘an-’ [I + rsi”zo ) ““-1 (1 %:ze )

Mean Tilt Angle Error o 0

rms Tilt AWk Error - rf/z - i-la

form as those used in the statistical analysis previously

described. The power errors are identical to those previ-

ously discussed, and the tilt angle errors correspond to

those for the phase error analysis, and the analyses pre-

sented here also apply. The errors for more generally

polarized incident fields are described in [16].

D. VS WR Interaction

The VSWR interaction between connecting electronic

components is the final application discussed here. Mod-

ern network analyzer systems use vector calibration to

minimize such errors; however, such instrumentation is not

always available. The statistical approach also finds appli-

cation when component requirements must be specified in

an error budget projecting overall operational system per-

formance.

A first-order VSWR interaction is shown in Fig. 6.

Reference planes associated with the two electronic com-

ponents are indicated by the subscripts, and the two

components are assumed to be connected by a cable of

length d and phase velocity k. The ratio of the direct

transmission to the first interaction as derived in this

figure is given by

R = F1172e-J2kd

(15)

This derivation provides both amplitude and phase infor-

mation so that the interaction effects can be arrived at

deterministically. In many cases, however, only VSWR

data are available as a description of the terminals, and the

phase information is lost. In such cases, the statistical

description developed here is appropriate. The value of a

expressed in terms of the scalar VSWR parameter is given

by

VSWRI – 1 VSWR2 – 1
lRI =

VSWRI + 1 VSWR1 + 1
(16)

where the subscripts on the VSWR quantities are associ-

=
(a)

~d—+

1 T, I T1T2e-lkd
, ●

r2T1e–Jkd I
4

r1r2T1e-12kd ! r1r2T1T2e-13kd
+

I

+--4

REFERENCE REFERENCE
PLANE1 PLANE2

(b)

Fig. 6. VSWR interaction. (a) Block diagram. (b) First-order intera-
ction.

ated with the two terminal planes. The parameter IR ] can

be equated to a and the statistical analyses can be applied.

The analysis thus far has considered only the first-order

interactions; the higher order interactions become signifi-

cant only when both VSWR values are large. The effects of

these higher order interactions are conventionally written

in closed form by observing that each succeeding interac-

tion equals the preceding interaction multiplied by R. The

total VSWR interaction is thus expressed by

R’=R/(l– R)

= lR’lfi . (17)

This expression can also be inverted to yield

R = R’/(l+ R’). (18)

Examining the phase of these expressions yields

P=pl–pl!

where

p“= tan-’(lRlsinp/(l - lR\COSP)

= tan-l(lR’lsin p’/(l+ \R’lcosp’). (19)

Thus, the statistics of the phase of the higher order interac-

tions have the same functional form as the phase statistics

previously derived.

The effect of the magnitude of the higher order interac-

tion terms can be treated statistically. The magnitude of R’

is given by

lR’l=lRl/(l +lR12-21Rlcosp) 1’2. (20)

The highest level reflection value is given by

lR’/~= = lR\/(1- Il?l)

= (VSWR1 - 1)(VSWR2 -1)

/(2(VSWR1 +VSWR2)). (21)

This represents the worst-case VSWR interaction and is

plotted in Fig. 7 for representative VSWR values. The
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Fig. 7. Worst-case VSWR interaction errors.
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Fig. 8. Statistics for totaf VSWR interaction magnitude relative to
first-order interaction values.

minimum level reflection value is given by

Il?’lti= lR1/(1+ [Rl). (22)

The mean value of the VSWR interaction can be calcu-

lated by assuming p to be uniformly distributed from O to

360°. The result is

~1~,1= (21R[/7r(l+ @l)) K(2fi/(1+ IRl)) (23)

where K( ) is the complete elliptic integral of the first

kind. Series expressions for the elliptic integral were ex-

amined [6], and a form based on the complementary

argument was found both accurate and computationally

convenient; the expression is

E ,~)1= lRl(l+(lR12/4)+ (91R14/64)+ . . . . (24)

The accuracy of this expression is better than 1.0 percent

for a <0.5 ( – 6 dB), and also provides a convenient means

to assess the effects of higher order interactions in an

average sense. Numerical values for the effects of the
higher order interaction statistics are presented in Fig. 8.

IV. SUMMARY

The statistics for coherent power, voltage, and phase

errors are derived under the assumptions that the ampli-

tude of an error component has a constant level and that

1419

the phase of the component is unknown and equally likely

and uniformly distributed between O and 360°. These

statistics differ from the values projected from Gaussian

statistics which apply to incoherent errors. In many practi-

cal microwave measurements, the number of statistically

similar components is not large, and the coherent errors

are better characterized by this statistical model. Several

applications are cited in which the vector calibration nec-

essary to determine the phase angle a is impractical.
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